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Reduced-order controllers for control of �ow past an airfoil
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SUMMARY

Reduced-order controller design by means of reduced-order model for control of a wake �ow is pre-
sented. Reduced-order model is derived by combining the Galerkin projection with proper orthogonal
decomposition (POD) or with other related reduced-order approaches such as singular value decompo-
sition or reduced-basis method. In the present investigation, we discuss the applicability of the reduced-
order approaches for fast computation of the optimal control for control of vortex shedding behind a
thin airfoil through unsteady blowing on the airfoil surface. Accuracy of the reduced-order model is
quanti�ed by comparing �ow �elds obtained from the reduced-order models with those from the full-
order simulations under the same free-stream conditions. A control of vortex shedding is demonstrated
for Reynolds number 100. It is found that downstream directed blowing on the upper surface of the
airfoil near the leading edge is more e�cient in mitigating �ow separation and suppressing the vortex
shedding. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Design and control of �uid dynamical systems require fast computational �uid dynamic
solvers. Reduced-order modelling provides a way to dramatically increase the speed of �ow
solvers by reducing the number of degrees of freedom. In this paper we will investigate
reduced-order controller design by means of reduced-order model for control of a wake �ow.
Control methods for �uid dynamics have attracted substantial interest in recent years due to
their applications in aero=hydrodynamics, combustion and MHD; see References [1–9] and
references therein. An interesting aspect of recent developments in computational methods for
control of �uids is the design of reduced-order controllers. The design of reduced-order con-
trollers for �uid system is essential for real-time implementation. A key step in the design is
the low-dimensional description of the �ow model. Although there are linear model reduction
approaches such as balanced truncation [10], Hankel norm approximation [11], Lanczos [12]
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532 S. S. RAVINDRAN

procedure and the Arnoldi [13] procedure, they are not suitable for large-scale nonlinear �uid
�ow systems.
For large-scale nonlinear systems such as the one discussed here, the most popular reduced-

order modelling approach is the proper orthogonal decomposition (POD). The POD is a
model reduction technique in which one may systematically extract the most energetic modes
from a set of realizations from the �ow model. Using these modes as basis functions in a
Galerkin projection one can reduce the Navier–Stokes model in a complex geometry to a
small �nite-dimensional system by retaining only a small number of POD modes. The POD
has been extensively discussed in the literature of the past decade as a model reduction tool
for simulation [14–18] and control [17, 19–21]. Unlike the traditional Galerkin methods which
uses piecewise polynomials or other special functions that have very little connection to the
characteristics of the model, the reduced-order modelling techniques discussed here use global
basis functions which not only re�ects the characteristics of the model and complexity of the
geometry well but also reduces the Navier–Stokes model to a low-dimensional model.
The viscous �ow around airfoil has been studied extensively due to its simple geometry

and its prototypical behaviour of blu� body wake �ows. Control of �ow past airfoil has appli-
cations in lift enhancement and, noise and vibration control. Experimental and computational
investigations of active control of �ow past airfoils at high angles of attack is an active area
of research as extending the usable angles of attack has many important applications. There is
also an extensive literature showing the e�ectiveness of �ow control for airfoils. For example,
in Reference [22] leading edge suction is investigated for transition delay, in Reference [23]
jet �aps were employed for lift increase and in Reference [24] surface suction=blowing was
used to rapidly change lift and drag on rotary wing aircraft. In Reference [25] experimental
results related to the moving surface boundary layer control for airfoils are presented. How-
ever, the control techniques considered in these works and others in the past are ad hoc or
experimental in nature. This paper presents the optimal control technique to resolve the prob-
lem of controlling the vortex shedding behind a thin airfoil using unsteady blowing control.
The reduced-order modelling is used for fast computation of the optimal control. It is shown
that the nature of the vortex shedding process is signi�cantly altered by unsteady blowing
control near the leading edge of the airfoil.
The paper is organized as follows. Section 2 presents the �ow model for the �ow past

airfoil and the methodology employed to obtain the detailed numerical solution databases.
Section 3 then brie�y describes the POD and other related approaches, and the construction
of the reduced-order model. Section 4 then presents the computational results for the numerical
simulation of the �ow past airfoil using the �nite element method and compare them with
that of the reduced-order models. In Section 5, we formulate an optimal control problem
for the control of vortex shedding for the �ow past the thin airfoil. In Section 6, we present
computational results for control showing the e�ectiveness of the present approaches. Section 7
concludes the paper.

2. THE GOVERNING EQUATIONS

Let � denote a two-dimensional domain occupied by an incompressible viscous �uid. Let
u(x; t) and p(x; t) denote the velocity and pressure �elds, respectively, and u0 the given
velocity. Moreover, let b denote a speci�ed boundary velocity. The Navier–Stokes equations
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REDUCED-ORDER CONTROLLERS 533

are then given by

@u
@t

− 1
Re

∇2u+ u · ∇u+∇p=0 in �× (0; T ]
∇ · u=0 in �× (0; T ]
u= b on �D × (0; T ]

−pn+ 1
Re
@u
@n
=0 on �N × (0; T ]

u(x; 0) = u0(x) in �

(1)

These equations are nondimensional and the only nondimensional parameter is the Reynolds
number de�ned as Re = U0c=�, where � is the kinematic viscosity and c is the characteristic
length.

2.1. Finite element spatial discretization

We use a weak formulation and �nite element method to approximate governing equations (1),
but other methods can also be used in the reduced-order modelling context.
A weak formulation of problem (1) is the following: Find u∈L2(0; T ;Vb) and p∈L2(0; T ;

L20(�)) such that(
@u
@t
+ u · ∇u; v

)
+
1
Re
(∇u;∇v)− (p;∇ · v) = 0 ∀v∈H1

0(�)

(∇ · u; q) = 0 ∀q∈L20(�)
u(x; 0) = u0(x) for x∈�

(2)

where Vb= {u∈H1(�) : u= b on �D; b∈H1=2(@�)} and H1
0 = {u∈H1(�) : u= 0 on �D}

and (·; ·) denotes the L2-inner-product.
A typical �nite element approximation of (2) is to seek solutions uh(·; t)∈Vbh ⊂ Vb and

ph ∈ S0h ⊂ L20(�) such that(
@uh
@t
+ uh · ∇uh; vh

)
+
1
Re
(∇uh;∇vh)− (ph;∇ · vh) = 0 ∀vh ∈V0h

(∇ · uh; qh) = 0 ∀qh ∈ S0h
uh(x; 0) = u0h ∈V0h

(3)

where V0h ⊂H1
0(�) and S

0
h ⊂L20(�).

2.2. Time discretization and solution techniques

For the time discretization of the Navier–Stokes equations we have implemented Crank–
Nicholson scheme and a second-order hybrid explicit=implicit scheme. Let M be the number
of time steps and �t=T=M . Also, let ukh= uh(k�t) and p

k
h=ph(k�t).
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2.2.1. Crank–Nicholson scheme. We introduce the second-order Crank–Nicholson time
discretization as follows: Seek ukh ∈Vbh and pkh ∈ S0h such that
u0h= u0h
for k=1; : : : ; M(

ukh − uk−1h

�t
; vh

)
+
1
2
(ukh · ∇ukh + uk−1h · ∇uk−1h ; vh)− (pkh;∇ · vh)

+
1
2Re

(∇(uk−1h + ukh);∇vh) = 0 ∀vh ∈V0h
(∇ · ukh; qh) = 0 ∀qh ∈ S0h

(4)

If second-order accuracy in time is to be achieved, we need to iteratively solve a nonlinear
algebraic system at each time step in (4). Our approach to this is to treat the nonlinear convec-
tive term by linear extrapolation in time, that is we approximate ukh·∇ukh by (2uk−1h −uk−2h )·∇ukh.
The corresponding time discretization is second order in time. Alternatively one can treat the
convective term explicitly using Adams–Bashforth method and obtain a noniterative scheme
which is also second-order accurate in time.

2.2.2. Hybrid Adams scheme. In the hybrid Adams scheme, the convective term is treated
explicitly using Adams–Bashforth method while the di�usion term is treated implicitly using
an Adams–Moulton method as follows. Seek ukh ∈Vbh and pkh ∈ S0h such that
u0h= u0h
for k=1; : : : ; M (

ukh − uk−1h

�t
; vh

)
+
(
3
2
uk−1h · ∇uk−1h − 1

2
uk−2h · ∇uk−2h ; vh

)

−(pkh;∇ · vh) + 1
2Re

(∇(uk−1h + ukh);∇vh) = 0 ∀vh ∈V0h
(∇ · ukh; qh) = 0 ∀qh ∈ S0h

(5)

Because the convective terms are evaluated at previous time steps, no iteration is required to
achieve the second-order accuracy of the scheme. The hybrid Adams method requires special
starting values and we found that starting with a lower order method did not reduce the long-
term accuracy of the scheme. However, the best results were achieved with a Crank–Nicholson
solution for the �rst step.

3. POD, SVD AND REDUCED-ORDER MODEL

3.1. Proper orthogonal decomposition

The POD is a procedure for extracting, from a given set of data {xi}Ni=1 of vectors in Rn,
an optimal basis (a smaller set of vectors) also belonging to Rn [26, 27]. Applications of this
procedure are extensive in turbulence modelling [16, 14] and image processing [28], and it is
now emerging as a tool in the �eld of control of �uids; see for e.g. References [17, 19, 29].

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:531–554
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Let the scalar functions u(x; ti), i=1; : : : ; N , be a sequence of numerical or experimental
observations (data set) where the parameter ti is time. The time average of the sequence,
de�ned by

um(x)= 〈u(x; ti)〉= 1
N

N∑
i=1
u(x; ti)

is, without loss of generality, assumed to be zero. The POD extracts orthonormal basis func-
tions �l(x), such that the reconstruction

u(x; ti)=
N∑
l=1
�l(ti)�l(x); i=1; : : : ; N

is optimal in the sense that the average least squares truncation error

ei=

〈∥∥∥∥u(x; ti)−
N∑
l=1
�l(ti)�l(x)

∥∥∥∥
2
〉

(6)

is a minimum for any given number i6N of basis functions over all possible sets of orthogonal
functions. Here ‖ · ‖ is the L2 norm. The functions �l(x) are called POD modes. Optimality
property (6) is equivalent to �nding functions � that maximizes the normalized average
projection of u(x; ti) onto �

max
�∈L2

〈|(u(x; ti);�)|2〉
‖�‖2

The maximization problem can be reduced to the following integral eigenvalue problem:∫
�
K(x;x′)�(x′) dx′= ��(x) (7)

where

K(x;x′)=
1
N

N∑
i=1
u(x; ti)u(x′; ti)

But in practice the observations that form the data are only available at discrete spatial grid
points and thus they are vectors of the form ui=[u(x1; ti); : : : ; u(xn; ti)]T. In this discrete case,
the kernal K(x;x′) is replaced with

G=

⎡
⎢⎢⎢⎣
K(x1; x1) · · · · · ·K(x1; xn)

...
...

K(xn; x1) · · · · · ·K(xn; xn)

⎤
⎥⎥⎥⎦

where

Gi; j=K(xi; xj)=
1
N

N∑
k=1
u(xi; tk)u(xj; tk); i; j=1; : : : ; n

and the eigenvalue problem (7) reduces to �nding the eigensolution of the matrix G. There
are at least two ways to solve this eigenvalue problem, the direct method and the method of
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snapshots. The direct method attempts to solve the eigenvalue problem involving the n× n
matrix G directly using the standard numerical techniques. This can be computationally in-
tensive if the number of grid-points n is larger than the number of observations N and will
not be discussed here.

3.1.1. The method of snapshots. The method of snapshots [15] is based on the fact that the
data vectors ui and the POD modes �l span the same linear space. Thus the POD mode is
assumed to be a linear combination of the data vectors

�l=
N∑
i=1
wliui ; l=1; : : : ; N (8)

After substituting (8) into the eigenvalue problem

G�= ��

the coe�cients wli are computed by solving the eigenvalue problem

Cw= �w

where

Cij=
1
N
(ui ; uj)

The correlation matrix C has dimension N ×N and often the number of snapshots N is much
smaller than the number of grid-points n. Therefore the corresponding eigenvalue problem can
be computed inexpensively when N � n. The solution of the eigenvalue problem associated
with C yields N eigenfunctions {�l}Nl=1 and eigenvalues {�l}Nl=1, where �1¿�2¿ · · ·¿�N .
The eigenfunctions �l have the property that they form a complete orthonormal set when
properly normalized. The eigenvalues �l satisfy

�l=
1
N

N∑
i=1

(�l; ui)

and if we de�ne the average kinetic energy as

E=
1
N

N∑
i=1
(ui ; ui)

we can use the fact that uj=
∑N

k=1(uj;�k)�k to show E=
∑N

i=1 �i. The velocity at any in-
stant can be expanded in terms of these eigenvectors as u(x; t)=

∑N
i=1�i(t)�i(x). If however

one computes the m dominant eigenfunctions using the percentage energy captured criterion,
Em=100(

∑m
i=1 �i)=(

∑N
i=1 �i) and uses them in the expansion, one obtains a reduced-order

solution

u(x; t)≈
m∑
i=1
�i(t)�i(x)

In most situations, the number of dominant eigenvalues m is much less than N , and hence,
not all eigenfunctions need to be computed. To save computational time, we compute only
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the �rst m dominant eigenvalues using the DEVESF subroutine from IMSL [30]. Routine
DEVESF �rst reduces the matrix to an equivalent symmetric tridiagonal matrix and then uses
the rational QR algorithm with Newton corrections to compute the extreme eigenvalues of the
tridiagonal matrix. The eigenvectors of the original matrix are computed by �rst computing
the eigenvectors of the tridiagonal matrix. This routine is based on EISPACK [31].

3.2. Singular-value decomposition

For any real m× n matrix A, there exists a real factorization
A=U	V T (9)

where U is an m×m orthogonal matrix whose columns form the left singular vectors. 	 is
an m× n pseudo-diagonal and semi-positive de�nite matrix with diagonal entries containing
the singular values in decreasing order, i.e. �1¿�2¿ · · ·¿�n. V is an n× n orthogonal matrix
and its columns form the right singular vectors.
One way to compute the SVD of A is to simply calculate the eigenvalues and eigenvectors

of ATA and AAT. Indeed,

AAT =U	2U T; ATA=V	2V T

and the singular values of A are found to be the square roots of the eigenvalues of AAT or ATA.
The left and right singular vectors of A are the eigenvectors of AAT and ATA, respectively.
Consider now the (N × n) snapshot matrix

A=

⎡
⎢⎢⎢⎣
u1(x1) · · · · · · u1(xn)

...
...

uN (x1) · · · · · · uN (xn)

⎤
⎥⎥⎥⎦

It is clear that (1=N )ATA=G and the corresponding eigenvalues are the proper orthogonal
eigenvalues. Therefore, POD can be carried out by computing the SVD of the matrix A. To
see this, let D=U	, then we can write the SVD of A as

A=
n∑
l=1
dlvTl (10)

where dl and vl are the lth columns of the matrices D and V; respectively. By (10), one can
set desired energy percentage Em, determine the required number of modes m and identify
the corresponding columns of D and V to obtain a reduced-order solution

u(x; t)≈
m∑
i=1
�i(t)�i(x)

where �i(t) is a function of time, whose value at time t= k�t is equal to the kth entry of dl,
where k=1; : : : ; N . Also, �i(x) is a function of x, and it corresponds to the entries seen in
vTl at every spatial grid point x= j�x, where j=1; : : : ; n.
Finally, the low-dimensional reduced base is de�ned as

VR ≡ span{�1;�2; : : : ;�m}
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3.3. Reduced-order model for state simulation

For state simulation, the reduced-order model construction proceeds as follows. First one
chooses a reduced-basis set consisting of the modes �i ; i=1; : : : ; m, where m is usually
very small compared to the number of functions used in �nite element approximations or the
number of grid points used in a �nite di�erence approximation. Next, one seeks approximation
to the state as

u(x; t)= um(x) +
m∑
i=1
�i(t)�i(x) (11)

where um is the time average of the snapshots. To determine the coe�cients �i(t); i=1; : : : ; n
we employ the Galerkin projection. The Navier–Stokes model residual R can be expressed as

R(u; p)=
@u
@t

− 1
Re

∇2u+ u · ∇u+∇p

Applying the Galerkin projection which enforces the residual to be orthogonal to each of the
basis functions, (R;�i)=0; i=1; : : : ; m, and integrating by parts on the Laplacian term yields(

@u
@t
+ u · ∇u;�i

)
− (p;∇ ·�i) + 1

Re
(∇u;∇�i) +

(
pn − 1

Re
@u
@n
;�i

)
�N

=0 (12)

for all �i ∈VR. Notice that basis elements �i are divergence free as �ow is incompressible
and satisfy zero boundary conditions on �D. Using these properties of �i and the boundary
condition on �N , we see that the pressure term and the boundary term vanish in (12). Then
(12) reduces to (

@u
@t
+ u · ∇u;�i

)
+
1
Re
(∇u;∇�i)=0 (13)

for all �i ∈ VR. On substitution of (11) into (13), we obtain the following nonlinear evolution
equation for the coe�cients Q(t):

dQ
dt
=AQ+ QTNQ+ e

Q(0) = Q0
(14)

where

Aij = −(�j · ∇um;�i)− (um · ∇�j;�i)− 1
Re
(∇�j;∇�i); i; j=1; : : : ; m

Nikl = −(�k · ∇�l;�i); i; k; l=1; : : : ; m

�0i = (u0;�i); ei=− (um · ∇um;�i)− 1
Re
(∇um;∇�i); i=1; : : : ; m

System (14) is the required reduced-order model of the uncontrolled Navier–Stokes model (1).
The computational cost of the reduced-order model would be small if m is small, ignoring
the cost of the o�-line determination of the basis functions �i ; i=1; : : : ; m.
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It is now clear that both POD and SVD require the generation of a snapshot set (data set).
A POD or SVD base can be no better than the information contained in the snapshot set
on which it is based. Therefore a necessary condition for producing e�ective low-dimensional
reduced bases is the generation of good snapshot sets. A good snapshot set should have all the
information needed to accurately carry out further simulations of the state or to e�ect control
using the associated reduced-order models. However, the state of a system is determined by
parameters in the model such as initial and boundary conditions, sources, coe�cients and
geometry. The state also depends on the independent variables. Therefore a snapshot set can
be a steady-state solutions corresponding to several sets of design parameters [6], an unsteady
state solutions for a �xed set of design parameter values evaluated at several instants in time
[17, 19] or several unsteady state solutions corresponding to di�erent sets of parameter values
evaluated at several instants in time.

4. COMPUTATIONAL RESULTS FOR SIMULATION

In this section, we present the computational results for the simulation of �ow around an
inclined airfoil. We also compare and contrast the simulations of �nite element and reduced-
order models.
The geometric con�guration of the �ow around an inclined airfoil is shown in Figure 1.

The entire �ow domain extends to six-times the airfoil length c (=1) in the horizontal and
vertical directions. The airfoil is placed inside the domain such that the leading edge of the
airfoil is at (x; y)= (1; 1) and inclined at an angle of 45◦ to the in�ow direction. A Reynolds
number of Re=100 was chosen. No slip boundary conditions were applied on the surface
(�s) of the airfoil; an in�ow boundary condition was applied at the left and bottom boundaries
(�i):

u= uin = cos(�=4) and v= vin = sin(�=4)

and an out�ow boundary condition was applied at the top and right boundaries (�o):

−pn+ 1
Re
@u
@n
=0

All the computations were done with a 127× 127 spatial grid and a time step size
�t=0:025. The spatial grid points are clustered in the vicinity of the airfoil and towards
the leading and trailing edges; see Figure 2. In order to assess the convergence of the nu-
merical solutions, 127× 127 grid solution was compared with that obtained on a 354× 354
grid and the variation was found to be less than 1%. In addition a coarse 64× 64 grid so-
lution was used to compute the Richardson interpolation and compared with 354× 354 grid
solution. The variation was again found to be less than 1%. The 127× 127 spatial grid is
therefore considered to provide a su�ciently accurate resolution for this �ow. Both the time
discretization schemes of Section 2.2 showed second-order accuracy in time and found to
be comparable in e�ciency. But the Crank–Nicholson scheme when implemented in iterative
mode without using the extrapolation in time was ine�cient. Typical computations require 20
CPU minutes per time step on a single processor SUN Ultra 60 workstation, while the time
integration proceeds for approximately 1000 time steps.
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Γι 

ι Γ

U 8

Figure 1. Sketch of the �ow con�guration considered.

Figure 2. Computational grid for �nite element simulation.

For this set of parameters and without boundary control, the �ow pattern displays the
expected evolution as the Reynolds number increases. For highly viscous �uids, the �ow
practically remains attached. At low viscosities, the �ow becomes unsteady, and typical Kar-
man vortex streets emerge. Figure 3 shows the evolution of the �ow for Re=100. Soon after
the impulsive start, both the front and rear stagnation points begins to move. The movement
of the rear stagnation point is towards the trailing edge whereas that of the front stagnation
point is towards the leading edge. After initial separation, the lift increases owing to enlarge-
ment of the clockwise separation bubble. This bubble extends beyond the trailing edge and
breaks up. The stalling characteristic of the airfoil begins with the break up of the clockwise
bubble. Afterwards, new counterclockwise bubbles are formed near the upper surface of the
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REDUCED-ORDER CONTROLLERS 541

Figure 3. Snapshots of vorticity at various time instants: (a) t=2:5; (b) t=7:5;
(c) t=12:5; (d) t=17:5; (e) t=22:5; and (f) t=25.
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Figure 4. (a) Normalized eigenvalues of the correlation matrix C.
(b) Normalized eigenvalues of the matrix G.

airfoil. An increase in the strength of a clockwise (or counterclockwise) bubble is associated
with lower (or higher) pressures along the airfoil surface of contact. The lift increases when
attached clockwise bubble grow and when counterclockwise bubbles are shed. It decreases
when counterclockwise bubbles grow and clockwise bubbles are shed.
In the rest of this section, we focus on the reduced-order model construction and compare

its results with �nite element model results. For the reduced-order model construction for
uncontrolled �ow, the snapshots of the total �ow �eld are obtained by solving the Navier–
Stokes equations (1) with the above boundary conditions and zero initial condition. The
transient �ow �elds are recorded at constant time interval �t∗ (�t∗=5�t, �t=0:025) to
obtain the snapshot set. A total of 200 snapshots are recorded and these snapshots are then
made a set of homogeneous velocity �elds by subtracting the mean velocity �eld um from
each of these snapshots of the �ow �eld. The correlation matrix C was formed with the
aid of the �nite element scheme used to solve the Navier–Stokes model and the eigenvalue
problem associated with the matrix C was solved using the IMSL subroutine DEVESF [30]
for the �rst m dominant eigenvalues. The eigenvalue spectrum from the correlation matrix
is shown in Figure 4(a). For the reduced-order model based on SVD, the singular values
of the snapshot matrix were computed using the LAPACK subroutine DGESVD [32] which
implements in double precision the SVD via bidiagonalization followed by computing the
SVD of the bidiagonal matrix [33].
The eigenvalues of the matrix G are shown in Figure 4(b). Table I lists the normalized

eigenvalues of the matrices C and G, and their cumulative contribution to the energy. The
convergence of the modes for both POD and SVD is good with the �rst 12 modes representing
approximately 99% of the total energy albeit the convergence for SVD is slightly better.
Also the POD convergence is slower than that for the separated �ow in a channel reported
in Reference [19]. The POD eigenvalue and SVD singular-value computations were also
performed with di�erent numbers of snapshots and it was found that the magnitudes of the
�rst few modes were not changed signi�cantly. For numerically solving the reduced-order
model, Crank–Nicholson method was used with the time step �t=0:025 and the resulting
nonlinear algebraic system was solved using the Newton iterative method.
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Table I. Normalized eigenvalues of the 12 most energetic modes and their cumulative
contribution to the energy.

POD SVD

Eigenvalues Total energy Eigenvalues Total energy

Index
∑ni

i=1 �
C
i %

∑ni
i=1 �

G
i %

�Ci =
�Ci∑N
i=1 �

C
i

�Gi =
�Gi∑N
i=1 �

G
i

1 0.402244 40.22 0.369202 36.92
2 0.383402 78.56 0.337569 70.67
3 0.130067 91.57 0.180963 88.77
4 0.015489 93.12 0.037513 92.52
5 0.013117 94.43 0.021036 94.62
6 0.012087 95.64 0.011333 95.76
7 0.010793 96.72 0.009263 96.68
8 0.009085 97.62 0.009057 97.59
9 0.004641 98.09 0.006415 98.23
10 0.004217 98.51 0.003837 98.61
11 0.004362 98.94 0.002672 98.98
12 0.003221 99.27 0.002496 99.33

In order to highlight some of the other features of the POD reduced-order model, let
us next compare it with another reduced-order model based on the so-called reduced-basis
method (RBM); see References [6, 34]. In Reference [6] several ways to choose reduced-basis
subspaces were discussed. Here we consider the so-called Lagrange subspace and the basis
elements in this subspace are snapshots of the solutions of the Navier–Stokes model. Supposing
{
i}Ni=1 denote the snapshots, the reduced-order subspace is de�ned as V RBM = span{�i}Ni=1 =
span{
i+1 − 
i}Ni=1 and the reduced-order solution is de�ned as u= um +

∑N
i=1 �i�i. Once

we have a reduced-order subspace V RBM, the Navier–Stokes model is projected onto V RBM to
obtain a reduced-order model as in Section 3.3. For the reduced-basis simulations, we simply
took 100 snapshots in the time interval [0; 25] and applied Galerkin projection to obtain the
RBM reduced-order model.
The number of modes m employed was determined by comparing the result of the reduced-

order model with the numerical solution of the Navier–Stokes model. The error in the reduced-
order model decreases as we increase the number of eigenfunctions m and the best value
for m is found to be 20 for both POD and SVD. Therefore we will use only 20 modes in our
calculations reported in the forthcoming sections. Figures 5 and 6 show the temporal variation
of the u and v components of the velocity �eld at the spatial location (x; y)= (1:824; 1:616)
with 20 modes for the POD and SVD reduced-order models, and 50 basis elements for the
RBM-based reduced-order model. It reveals that the error takes the largest value at the initial
stage and then it reduces to a small value as the system reaches a periodic state. Among the
three approaches the SVD-based model was the most accurate when the number of modes
was small. It was noted for the RBM that the condition number of the mass matrix can
increase dramatically with increasing basis elements deteriorating convergence. However, the
POD and SVD reduced-order models do not generate such bad condition numbers. This is due
to the fact that snapshot sets often contain ‘redundant’ information and therefore they must be
post-processed to remove as much of the redundancy as possible before they can be used for

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:531–554



544 S. S. RAVINDRAN

Time

u
 v

el
o

ci
ty

0 105 15 20 25
-0.5

-0.25

0

0.25

0.5

0.75

1

POD
Full Model
RBM
SVD

Figure 5. Time evolution of u velocity at spatial point (1:824; 1:616) for POD, RBM and SVD models.
Full model velocity is shown for comparison.
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Figure 6. Time evolution of v velocity at spatial point (1:824; 1:616) for POD, RBM and SVD models.
Full model velocity is shown for comparison.

reduced-order modelling. POD and SVD may be viewed as a way to post-process snapshots.
Figure 7 shows the time evolution of the �rst seven amplitude coe�cients associated with the
20 mode POD reduced-order model. These time series reveal some well-de�ned structures,
which also support the existence of low-dimensional dynamics. To gain insight into the actual
structure of the attractor, one can use the time series to plot phase-space projections. For
example, Figure 8 shows six projections for the amplitude coe�cients. The relatively closed
nature of the resulting curves further illustrate the presence of a low-dimensional attractor.
We close this section with the observation that the reduced-order models should work in an
interpolatory setting.
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Figure 7. Time evolution of POD amplitude coe�cients in the 20-mode reduced-order model.

5. REDUCED-ORDER OPTIMAL CONTROL APPROACH

5.1. Control problem for airfoil

In this section, we will formulate an optimal control problem for the control of vortex shedding
for the �ow past the thin airfoil. The thin airfoil has simple geometry and is a representative
of high-lift aerodynamic �ows with massive separation region. The optimal control problem
we consider is that of suppressing the vortex shedding behind the airfoil by unsteady blowing
control on the boundary of the airfoil using the least amount of control e�ort. Denoting the
control actuator location on the boundary by �c, we seek the control in the form

u(x; t) = c(t)g(x) on �c × [0; T ]
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Figure 8. Phase space projections of amplitude coe�cients obtained through POD.

where c(t) and g(x) represent the undetermined control function and a prescribed velocity
�eld, respectively. The �rst step in solving the optimal control problem is to represent the
problem of interest as a cost functional to be minimized. The choice of cost functional to be
minimized to achieve our goal is not trivial. Since our goal is to suppress the vortex shedding
in the �ow, a straight forward choice is to regulate the square of the vorticity (the enstrophy)
over the time horizon (0; T ). Alternatively, one can minimize the wake unsteadiness or the
H 1-norm of the velocity �eld or track a target velocity �eld. The other less direct choice is
the minimization of viscous dissipation. We therefore consider �ve di�erent cost functionals
namely the cost functional for the enstrophy regulation

JEns(u)=
1
2

∫ T

0

∫
�

|∇ × u|2 dx dt + �
2

∫ T

0
|U |2 dt

where U =dc=dt, the cost functional for the viscous dissipation which for incompressible �ow
is equivalent to the drag on the surface

JDra(u)=
1
2

∫ T

0

∫
�

|∇u+∇uT|2 dx dt + �
2

∫ T

0
|U |2 dt

the cost functional for tracking a target velocity �eld

JTrack(u)=
1
2

∫ T

0

∫
�

|u − ud|2 dx dt + �
2

∫ T

0
|U |2 dt
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the cost functional for reducing the wake unsteadiness

JAmp(v)=
1
2

∫ T

0

∫
�

|v|2 dx dt + �
2

∫ T

0
|U |2 dt

where v= u − um is the wake unsteadiness and the cost function for the kinetic energy in
H 1-norm

JH1KE(u)=
1
2

∫ T

0

∫
�

|u|2 + |∇u|2 dx dt + �
2

∫ T

0
|U |2 dt

In the above cost functionals, the �rst term is a measure of exactly that quantity we would
like to minimize and the second term is necessary since we will not impose any a priori
constraints on the controls. The parameter � adjusts the relative weights of the two terms in
the functional. The controlled Navier–Stokes system we consider is

@u
@t

− 1
Re

∇2u+ u · ∇u+∇p=0 in �× (0; T ]
∇ · u=0 in �× (0; T ]
u= c(t)g(x) on �c × (0; T ]
u= (cos(�=4); sin(�=4)) on �i × (0; T ]

−pn+ 1
Re
@u
@n
=0 on �o × (0; T ]

u(x; 0) = u0(x) in �

(15)

where �o, �c and �i are the out�ow, actuator and in�ow parts of the boundary, respectively.
The optimal control problem we will consider can be described in a general manner as

follows:
Find U (t) that minimizes the cost J(u; U )= 1

2

∫ T
0 [F(u) + �|U |2] dt subject to the constraint

that the �ow �elds satisfy the controlled Navier–Stokes system (15).
Solution of this nonlinear optimal control problem requires large-scale numerical approxi-

mation involving hundreds of thousands of variables; see for example References [3, 4, 7, 35]
and [36] for adjoint equation approach to solve continuous optimal �ow control problems.
Below we discuss a controller design using reduced-order model which allows fast computa-
tions of control.

5.2. Reduced-order control problem

As noted before, a good snapshot set should have all the information needed to e�ect control
using the associated reduced-order model. Obviously, some a priori knowledge about the types
of states to be controlled using the reduced-order model is very useful. Our computational
strategy for solving the above optimal control problem is to replace the Navier–Stokes system
(15) by a reduced-order model and solve the resulting reduced-order control problem by an
iterative minimization method. Therefore, we need a set of POD eigenfunctions that span the
solution space of the system for various trajectories of c(t), which include not only the optimal
trajectory but also other trajectories appearing during the iterative minimization of the cost
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functional. The snapshot set appropriate for this purpose is prepared as follows. We apply a
time-varying pro�le c(t) = t=12:5 in the boundary condition on �c and solve the Navier–Stokes
model over the time interval [0; 25] to record the snapshots. The spatial grid, time step size,
Reynolds number and boundary conditions were all the same as in the simulations reported in
Section 4. Two hundred snapshots were recorded at constant time interval �t∗ (�t∗=5�t,
�t=0:025). Another interesting approach for this purpose is discussed in Reference [29] that
involves adaptively updating the POD eigenfunctions.
As described in Reference [19], it is necessary to remove the inhomogeneities on the

boundary. A convenient way to do this is to introduce a reference �ow �eld (ur ; pr; �r) that
satis�es the steady state version of the Navier–Stokes system (15) with a �xed control pro�le
on �c, i.e. �c : u(x)= crg(x). Let (ur1 ; pr1) and (ur0 ; pr0) be two �ow �elds corresponding
to cr =1 and 0, respectively. Set (ur ; pr)= (ur1 ; pr1)− (ur0 ; pr0). Then each �ow �eld in the
modi�ed snapshot set

{(u(x; t k); p(x; t k))− c(t k)(ur(x); pr(x))}; k=1; : : : ; n

satis�es homogeneous boundary conditions on �c. Finally, we let (um; pm) be the mean �ow
�eld of these modi�ed �elds and de�ne a new snapshot set

{(u(x; t k); p(x; t k))− c(t k)(ur ; pr)− (um; pm)}; k=1; : : : ; n

which satis�es homogeneous boundary conditions on all the boundaries. To these n snap-
shots, we apply the POD to obtain the basis functions in descending order according to the
information content of the system.
We employ the Galerkin projection on the Navier–Stokes model with the above POD basis

functions to derive the reduced-order model to be used in the optimization algorithm to solve
the optimal control problem. The �ow �eld is decomposed as follows:

(u; p)= (um; pm) + c(t)(ur ; pr) +
m∑
i=1
�i(t)�i (16)

where �i is the ith POD basis function, �i(t) the corresponding coe�cient and m the total
number of POD basis functions. The reduced-order optimal control problem is obtained by
inserting expansion (16) into (13) and the cost functional J(u; U ):

Minimize J(X; U )=
∫ T

0

[
‘(X) +

�
2
U 2
]
dt

subject to
dX
dt
=f(X) + BU

X(0)=X0

(17)

where X = (1; �; c)T, f(X)= −AX−N(X); i; j=0; : : : ; m+1. In order to solve it numerically,
we �rst discretize it in time by using Crank–Nicholson method for the time derivative and
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trapezoidal rule for the time integral, and rewrite it as

Minimize J(Z) =
M∑
k=1
[ 12 (‘(X

k−1) + ‘(Xk)) + h(Uk)]�t

subject to F(Z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

X1 −X0
�t

− 1
2
(f(X1) + f(X0)) + BU 1

...

XM −XM−1

�t
− 1
2
(f(XM ) + f(XM−1)) + BUM

⎤
⎥⎥⎥⎥⎥⎥⎦
=0

(18)

where Z=(X; U ) and �t=T=M . This is a �nite-dimensional nonlinear optimal control prob-
lem or nonlinear programming problem:

Minimize J(Z)

subject to F(Z)=0
(19)

An e�cient method for the solution of (19) is the sequential quadratic programming method
(SQP); see References [3, 4, 35, 36] for SQP method developments in solving related optimal
control problems in in�nite-dimensional setting. The SQP method solves the nonlinear optimal
control problem (18) by a sequence of linear quadratic control problems.
Suppose a current estimate Z( j) to the minimizer Z∗ is known, a search direction T( j) is

computed by solving the quadratic programming problem

Minimize 1
2 T

( j)TB( j)T( j) + T( j)
T∇J(Z( j))

such that ∇F(Z( j))TT( j) + F(Z( j))=0
(20)

where ∇F(Z( j))= {∇F1(Z( j)); : : : ;∇FM (Z( j))}, the matrix of the constraint normals evaluated
at Z( j), F(Z) is the vector (F1(Z); : : : ; FM (Z))T, and B( j) is a positive de�nite approximation
to the Hessian, with respect to Z, of the Lagrangian

L(Z; V)=J(Z) + VTF(Z)

where V=(�1; : : : ; �M )T is the vector of Lagrange multipliers, and B( j) is an estimate to
LZZ(Z( j); V( j)) for an estimate V( j) to the optimal Lagrange multiplier V∗. The solution to
quadric programming problem (20) is obtained by solving the associated �rst-order necessary
condition of optimality [4, 36].
To continue the iterative procedure a new estimate to the minimizer Z∗ is chosen by

Z( j+1) =Z( j) + 	( j)T( j)

where 	( j) is an appropriately chosen scalar step length, and new estimates B( j+1) and V( j+1) are
computed. Quadratic programming problem (20) is solved again with j replaced with j+1, and
the process is repeated until the pair (Z( j); V( j)) satisfy the Karush–Kuhn–Tucker conditions
[4, 36] for a minimizer. The SQP requires satisfaction of only a linear approximation of the
state constraints, avoiding the need to converge fully. Thus, the state equations are satis�ed
as the control values converge to their optimal values and the convergence is quadratic.
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6. COMPUTATIONAL RESULTS FOR CONTROL

In this section, we present the results for the computation of optimal control using the reduced-
order approaches. E�ective placement of control actuator is crucial for �ow control. We
address this problem by the following criterion: Carry out simulations with blowing at di�erent
locations and see which one has the ‘maximum’ in�uence. We �rst choose to place the
actuator on the upper surface of the airfoil. This choice is motivated by the heuristic that
if one wants maximum in�uence in the �ow, then the control has to be applied in that
vicinity. Furthermore, we de�ne the prescribed velocity function g in the control de�nition
to be g(x) = (cos(�=9); sin(�=9)) so that the blowing is directed downstream and into the
boundary layer and wake. Such an unsteady blowing is known to energize the low momentum
�uid inside the boundary layer and mitigate �ow separation. We next �nd where exactly on
the upper surface the actuator has to be placed for best performance. To �nd this, we divided
this portion of the airfoil into 10 equal parts of size �x=1=10 and computed the control
for each of these cases. For the above criterion, the best position for the actuator was found
to be �c : 16x61:1 which is in the vicinity of the leading edge separation point. For the
computational results presented in the rest of this section, we placed the actuator at this
optimal position. The penalty parameter � plays a crucial role in the control design and we
select it to be 106�6100 to avoid under=overshooting.
We have performed control simulations with all three reduced-order modelling approaches.

As in the case of uncontrolled simulations reported in Section 4, POD and SVD-based reduced-
order models required only 20 modes to converge and converged to comparable optimal
controls whereas the one based on RBM did not converge with the same number of modes.
Therefore only results for the 20-mode POD model case is reported here. The choice of the
cost functional to be minimized is crucial to achieve the control objective. Figures 9, 10,
11, 12 and 13 show the performance of the optimal controls based on JAmp and JTrack,
respectively. Shown in the �gures are the contours of speed of the �ow at time T =25. The
control for the tracking cost function is signi�cantly di�erent from the other cases display
the distribution of the optimal control (c(t)) on the actuator for the cost functions JTrack,
JH1KE, JDra, JEns and JAmp, respectively. For the tracking functional JTrack, we chose the
desired velocity ud to be the steady velocity �eld for Re=1 with zero boundary conditions
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Figure 9. Computed control as a function of time for cost-function JTrack.
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Figure 10. Computed control as a function of time for cost-function JH1KE.
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Figure 11. Computed control as a function of time for cost-function JDra.
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Figure 12. Computed control as a function of time for cost-function JEns.

on �c. Figure 14 and gave the best performance in terms of suppressing the vortex shedding.
The performance for the other three controls were about the same. As indicated by the con-
trolled �ow �elds, the vortex shedding has been e�ectively eliminated by the optimal unsteady
blowing control.
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Figure 13. Computed control as a function of time for cost-function JAmp.

Figure 14. Vorticity of controlled �ow for cost-function JAmp (left) and JTrack (right).

Let us next comment on the CPU time required for each step in the reduced-order model
construction and compare the total CPU time with that of the �nite element method when
simulating the Navier–Stokes equations during a certain period of time, say [0; 25]. When SUN
Ultra 60 workstation is used, it requires about 333 h to obtain 200 snapshots and 5 min (or
7min) to obtain the POD modes (or SVD) from these snapshots. As expected the consumption
of CPU time for the reduced-order control computation is much less than that for the case
of the full-order control computation since the degree of freedom of the former is only
about 5=3571 of the latter. In the control computation, one iteration of the reduced-order
SQP requires about 10 min. The number of iterations needed to reach the converged optimal
control is 6. The remaining steps in the POD (or SVD) takes about 6 min (or 8 min). The
total CPU time requirement for the reduced-order control computation is about 334 h. This
is a substantial savings in computational time since the control computation with full-order
Navier–Stokes model using the conjugate-gradient method (CGM) (for e.g.) requires solving
the Navier–Stokes equations and the adjoint Navier–Stokes equations each time the control
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is updated and the CGM typically takes about 40–60 iterations before giving a converged
optimal control. Therefore, the construction of the low-dimensional model consumes about that
required in just one iteration of the CGM. This savings in computational time is mainly due
to the fact that the adjoint equation of the Navier–Stokes equations, which is computationally
as costly as the Navier–Stokes equation itself, is computed using the reduced-order model
in the reduced-order control computation. The reduction in computational time with the use
of the reduced-order models in three-dimensional complex geometries will be much more
signi�cant as the di�erence in the degrees of freedom between reduced- and full-order models
will become much larger. However our reduced-order model design does not introduce any
additional di�culties in three dimension as it employs Galerkin projection.

7. CONCLUDING REMARKS

We have presented a fast computational approach for controller design using reduced-order
models for control of vortex shedding behind a thin airfoil. The reduced-order models are de-
rived by combining Galerkin projection and POD or other related reduced-order approaches.
The fast computational approach for controller design was used to compute the optimal con-
trol that suppresses the vortex shedding. The control was e�ected through blowing on the
airfoil. It was found that downstream directed blowing on the upper surface of the airfoil near
the leading edge is more e�cient in mitigating the �ow separation and suppressing vortex
shedding.
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